Pluralsight – Understanding and Applying Logistic Regression

Length 2h 22m With Project Files MP4

link

DEAD LINKS GO TO THE ARCHIVE LINK ABOVE THIS TEXT

Logistic Regression is a great tool for two common applications: binary classification, and attributing cause-effect relationships where the response is a categorical variable. While the first links logistic regression to other classification algorithms (such as Naive Bayes), the second is a natural extension of Linear Regression. In this course, Understanding and Applying Logistic Regression, you’ll get a better understanding of logistic regression and how to apply it. First, you’ll discover applications of logistic regression and how logistic regression is linked to linear regression and machine learning. Next, you’ll explore the s-curve and its standard mathematical form. Finally, you’ll learn whether Google’s stock returns will go up or down, using Excel (solver), R, and Python. By the end of this course, you’ll have a strong applied knowledge of logistic regression that will help you solve complex business problems.

Folder Links


Leave a Reply

Your email address will not be published. Required fields are marked *